354 lines
12 KiB
Markdown
354 lines
12 KiB
Markdown
|
---
|
||
|
title: Drawing a wireframe sphere with Canvas2D using ellipses
|
||
|
date: 2022-10-20
|
||
|
draft: true
|
||
|
math: true
|
||
|
---
|
||
|
|
||
|
```{=html}
|
||
|
<script src="/assets/sphere-main.js" defer></script>
|
||
|
```
|
||
|
|
||
|
In order to *visualize* a raycasting algorithm, I recently started writing some
|
||
|
javascript code to render [3D gizmos] using [Canvas2D].
|
||
|
I reached a point where I needed to draw a (unit) **sphere**. A simple mind would
|
||
|
think displaying a *circle* for the circumference of the sphere is enough.
|
||
|
But if we want to make the *rotation* of the sphere *visible* and *obvious*,
|
||
|
it's also important to to display its *wireframe*.
|
||
|
|
||
|
[3D gizmos]: https://twitter.com/sbbls/status/1582473846140960769?s=20&t=K1rByQRkOudayyoWZq5yCQ
|
||
|
[Canvas2D]: https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
|
||
|
|
||
|
If you click and drag your mouse over the next canvas to rotate the camera
|
||
|
'round the spheres, it should become clear that we can only really grasp the
|
||
|
orientation on the right.
|
||
|
|
||
|
```{=html}
|
||
|
<figure id="split-fig" class="leftbottom">
|
||
|
<input id="split_phi" orient="vertical" type="range" min="-1" step="any" max="1" value=".42">
|
||
|
<canvas id="split" class="r2" tabindex="-1"></canvas>
|
||
|
<input id="split_theta" type="range" min="0" step="any" max="1" value=".125" style="direction: rtl">
|
||
|
</figure>
|
||
|
<style>
|
||
|
.leftbottom {
|
||
|
display: grid;
|
||
|
grid-template: "p c" 1fr
|
||
|
"_ t" auto / auto 1fr;
|
||
|
}
|
||
|
.leftbottom input:not([orient="vertical"]) { grid-area: t}
|
||
|
</style>
|
||
|
<script type="module">
|
||
|
let camera = { theta: 0, phi: 0 }
|
||
|
new Canvas('split', {
|
||
|
inputs: [split_theta, split_phi],
|
||
|
init() { setup_orbiter(this, split_theta, split_phi) },
|
||
|
render(ctx) {
|
||
|
ctx.clearRect(0, 0, this.width, this.height)
|
||
|
ctx.translate(this.width / 2, this.height / 2)
|
||
|
ctx.scale(1, -1)
|
||
|
|
||
|
camera.theta = split_theta.value * 2 * PI
|
||
|
camera.phi = split_phi.value * PI / 2
|
||
|
|
||
|
let x = this.width / 4
|
||
|
let r = min(this.width / 2, this.height) / 2 - 20
|
||
|
let c = color('dark')
|
||
|
|
||
|
ctx.lineCap = 'round'
|
||
|
|
||
|
// left
|
||
|
ctx.translate(- x, 0)
|
||
|
this.drawBasis(camera, r)
|
||
|
this.drawCircle(0, 0, r, c, 4)
|
||
|
|
||
|
// right
|
||
|
ctx.translate(2 * x, 0)
|
||
|
this.drawBasis(camera, r)
|
||
|
this.drawCircle(0, 0, r, c, 4)
|
||
|
ctx.lineCap = 'butt'
|
||
|
this.drawWireframe(camera, r)
|
||
|
}
|
||
|
})
|
||
|
</script>
|
||
|
```
|
||
|
|
||
|
But how de we render such a wireframe of the sphere using only 2D primitives?
|
||
|
The usual technique is to compute the position of all the vertices that compose
|
||
|
the wireframe. Then you compute all the edges. To render the wireframe, project
|
||
|
every vertex to the screen, then stroke a line segment for every edge.
|
||
|
|
||
|
```{=html}
|
||
|
<figure class="leftbottom">
|
||
|
<input id="bad_phi" orient="vertical" type="range" min="-1" step="any" max="1" value=".42">
|
||
|
<canvas id="wire" class="r1 hw" tabindex="-1"></canvas>
|
||
|
<input id="bad_theta" type="range" min="0" step="any" max="1" value=".125" style="direction: rtl">
|
||
|
</figure>
|
||
|
<script type="module">
|
||
|
let camera = { theta: PI / 4, phi: .7 }
|
||
|
let points = [], edges = []
|
||
|
|
||
|
// yes, there are duplicates at poles, no, i do not care
|
||
|
for (let i = 0, c = 6; i <= c; i++) {
|
||
|
let b = i * Math.PI / c
|
||
|
for (let j = 0, d = 8; j < d; j++) {
|
||
|
let a = j / d * Math.PI * 2
|
||
|
points.push(vec(cos(a) * sin(b), sin(a) * sin(b), cos(b)))
|
||
|
edges.push([i * d + j, i * d + ((j + 1) % d)])
|
||
|
if (i > 0) edges.push([i * d + j, (i - 1) * d + j])
|
||
|
}
|
||
|
}
|
||
|
|
||
|
let _points = points.map(_ => vec())
|
||
|
|
||
|
new Canvas('wire', {
|
||
|
inputs: [bad_theta, bad_phi],
|
||
|
init() { setup_orbiter(this, bad_theta, bad_phi) },
|
||
|
render(ctx) {
|
||
|
ctx.clearRect(0, 0, this.width, this.height)
|
||
|
ctx.translate(this.width / 2, this.height / 2)
|
||
|
ctx.scale(1, -1)
|
||
|
ctx.lineCap = 'round'
|
||
|
camera.theta = bad_theta.value * 2 * PI
|
||
|
camera.phi = bad_phi.value * PI / 2
|
||
|
points.forEach((v, i) => project(_points[i], camera, v))
|
||
|
let r = min(this.width, this.height) / 2 - 20
|
||
|
this.drawBasis(camera, r)
|
||
|
ctx.strokeStyle = ctx.fillStyle = color('dark')
|
||
|
ctx.beginPath()
|
||
|
edges.forEach(([a, b]) => {
|
||
|
let u = _points[a]
|
||
|
let v = _points[b]
|
||
|
ctx.moveTo(u.x* r, u.y * r)
|
||
|
ctx.lineTo(v.x* r, v.y * r)
|
||
|
})
|
||
|
ctx.stroke()
|
||
|
}})
|
||
|
</script>
|
||
|
```
|
||
|
|
||
|
Yes, but.
|
||
|
A first drawback is that computing vertices and edges is quite annoying.
|
||
|
Projecting every vertex on the screen for every redraw is also computationally
|
||
|
intensive. But most importantly, **it's ugly**. Indeed, edges are straight, and
|
||
|
you need a lot of them to convince yourself that you are looking at a sphere.
|
||
|
So much so that it clutters the canvas, and makes it very hard to legibly see
|
||
|
what is behind the sphere. Which I want to do, because it's supposed to be a
|
||
|
semi-transparent gizmo.
|
||
|
|
||
|
I am the bearer of *great news*: it is actually possible to draw a wireframe sphere
|
||
|
(really, any 3d-rotated circle) in Canvas2D, with:
|
||
|
|
||
|
- sexy **smooth** edges, like in the first example, thanks to the `ellipse()` function.
|
||
|
- no need to compute individual vertices and edges.
|
||
|
- a short implementation (I'd argue it's simpler than manually computing vertices)
|
||
|
|
||
|
## Sphere sections
|
||
|
|
||
|
The first thing to notice is that the wireframe above is only composed of
|
||
|
*circles*. And not just any circles, but circles that *lay on the surface of the
|
||
|
sphere*. They can therefore each be characterized as the intersection of a plane
|
||
|
and the sphere, i.e be described by a normal vector `n` (orthogonal to the plane)
|
||
|
and an offset `o` (`-1 < o < 1`) for the displacement of the plane along this
|
||
|
normal vector.
|
||
|
|
||
|
```{=html}
|
||
|
<figure>
|
||
|
<canvas id="circ" class="r1 hw"></canvas>
|
||
|
<input id="circ_offset" type="range" min="-1" step="any" max="1" value=".5">
|
||
|
</figure>
|
||
|
<script type="module">
|
||
|
let _V = vec()
|
||
|
let p1 = vec(), p2 = vec()
|
||
|
let normal = vec(0, 1 / sqrt(2), 1 / sqrt(2))
|
||
|
let camera = { theta: PI / 4, phi: .5 }
|
||
|
let _normal = project(vec(), camera, normal)
|
||
|
new Canvas('circ', {
|
||
|
inputs: [circ_offset],
|
||
|
render(ctx) {
|
||
|
ctx.clearRect(0, 0, this.width, this.height)
|
||
|
ctx.translate(this.width / 2, this.height / 2)
|
||
|
ctx.scale(1, -1)
|
||
|
ctx.lineCap = 'round'
|
||
|
|
||
|
let x = this.width / 4
|
||
|
let radius = min(this.width, this.height) / 2 / sqrt(2) - 20
|
||
|
|
||
|
this.drawBasis(camera, radius)
|
||
|
this.drawVec(camera, Z, radius, color('cyan'), 3)
|
||
|
|
||
|
project(_normal, camera, Z)
|
||
|
project(p1, camera, X)
|
||
|
project(p2, camera, Y)
|
||
|
|
||
|
this.drawCircle(0, 0, radius, color('dark'), 4)
|
||
|
this.drawWireframe(camera, radius)
|
||
|
|
||
|
ctx.save()
|
||
|
ctx.globalAlpha = .5
|
||
|
ctx.fillStyle = color('yellow')
|
||
|
ctx.scale(radius, radius)
|
||
|
ctx.translate(_normal.x * circ_offset.value, _normal.y * circ_offset.value)
|
||
|
ctx.beginPath()
|
||
|
ctx.moveTo(p1.x + p2.x, p1.y + p2.y)
|
||
|
ctx.lineTo(p1.x - p2.x, p1.y - p2.y)
|
||
|
ctx.lineTo(- p1.x - p2.x, - p1.y - p2.y)
|
||
|
ctx.lineTo(- p1.x + p2.x, - p1.y + p2.y)
|
||
|
ctx.fill()
|
||
|
ctx.restore()
|
||
|
|
||
|
this.pathSection(camera, Z, radius, circ_offset.value)
|
||
|
|
||
|
ctx.strokeStyle = color('yellow')
|
||
|
this.drawSectionFront(camera, Z, radius, circ_offset.value, color('yellow'), 3)
|
||
|
|
||
|
// ctx.save()
|
||
|
// ctx.beginPath()
|
||
|
// this.pathSection(camera, Z, radius, circ_offset.value)
|
||
|
// ctx.clip()
|
||
|
// ctx.strokeStyle = color('dark')
|
||
|
// ctx.lineWidth = 4
|
||
|
// this.drawWireframe(camera, radius)
|
||
|
// ctx.restore()
|
||
|
|
||
|
// ctx.lineWidth = 6
|
||
|
// ctx.strokeStyle = color('yellow')
|
||
|
// this.drawSection(this.camera, this.n, r, circ_o.value)
|
||
|
}
|
||
|
})
|
||
|
</script>
|
||
|
```
|
||
|
|
||
|
And indeed, to obtain the wireframe from earlier, we just have to cut the
|
||
|
sphere with:
|
||
|
|
||
|
- a plane rotating around the z axis ;
|
||
|
- a plane orthogonal to z, shifting along the z axis.
|
||
|
|
||
|
## Projected circles are ellipses
|
||
|
|
||
|
Now that we know what the wireframe is made of, and how to characterize these
|
||
|
intersections, how do we render them?
|
||
|
|
||
|
The key is to realize that the projection of a circle on the screen will *always*
|
||
|
be an ellipse. Conveniently, Canvas2D provides us with a way to draw ellipses,
|
||
|
defined as such:
|
||
|
|
||
|
> `ellipse(x, y, radiusX, radiusY, rotation, startAngle, endAngle)`
|
||
|
>
|
||
|
> The `ellipse()` method creates an elliptical arc centered at `(x, y)` with the
|
||
|
> radii `radiusX` and `radiusY`. The path starts at `startAngle` and ends at
|
||
|
> `endAngle`.
|
||
|
|
||
|
|
||
|
We just need to find what the parameters should be for any given section.
|
||
|
Because we're only doing orthographic projection here, it turns out it's really
|
||
|
not difficult:
|
||
|
|
||
|
- the angle of the ellipse is the angle of the (projected) normal vector on screen.
|
||
|
- the radius of the circle is `(1 - o * o)`, which becomes the `radiusY` of the ellipse.
|
||
|
- the `radiusX` of the ellipse is the radius of the circle times how much of the (projected)
|
||
|
normal vector is facing us.
|
||
|
|
||
|
### Occlusion culling
|
||
|
|
||
|
We're already able to generate pretty, smooth wireframes. Now let's
|
||
|
take care of *occlusion culling*. That is, only draw the arc of the ellipse
|
||
|
that is directly facing us.
|
||
|
|
||
|
(Actually the MDN docs are wrong here, startAngle and endAngle are the
|
||
|
eccentric angles of the start and end points, not an actual measurable
|
||
|
geometric angle).
|
||
|
|
||
|
## Putting things in perspective
|
||
|
|
||
|
So far so good. However to actually convince anyone of the versatility of this
|
||
|
method, we really ought to also support perspective projection. Good news:
|
||
|
perspective-projected circles are *still* ellipses. Bad news: computing the
|
||
|
parameters of the ellipse is a tad more involved, as:
|
||
|
|
||
|
- the angle of the projected normal on the screen is no longer the angle of the
|
||
|
ellipse ;
|
||
|
- the perspective-projection of the center of the circle is no longer the
|
||
|
center of the ellipse.
|
||
|
|
||
|
I'm gonna show you my method --- but I really would like a simpler one, so if
|
||
|
you know better, please tell me!
|
||
|
|
||
|
Until them I purposefully getting specific about the coordinate system we're
|
||
|
using and camera projection. But to delve into perspective projection, we cannot
|
||
|
cut it.
|
||
|
|
||
|
---
|
||
|
|
||
|
### Equations
|
||
|
|
||
|
You can skip this if you just want to get to the final implementation.
|
||
|
|
||
|
Without loss of generality, we can just assume we have everything expressed in
|
||
|
the camera coordinate system (the projection used before gets you there).
|
||
|
Let's consider the points on screen (at depth `z=1`) that belong to the ellipse.
|
||
|
|
||
|
They must be at coordinate `\overrightarrow{p} = (s \cdot x, s \cdot y, s)` for some $s$ because that's how
|
||
|
projection scaling works. The coordinates of its projection is `\overrightarrow{q} = \overrightarrow{p} / s = (x, y, 1)`
|
||
|
Now, this point belongs to the original circle,
|
||
|
therefore it satisfies the following equations:
|
||
|
|
||
|
- they are on the plane orthogonal to normal `\overrightarrow{n}` and going through `\overrightarrow{c}`,
|
||
|
the center of the circle:
|
||
|
|
||
|
`(\overrightarrow{p} - \overrightarrow{c}) \cdot \overrightarrow{n} = 0`
|
||
|
|
||
|
- they are at distance `r` from the line directed by `\overrightarrow{n}` going through `\overrightarrow{c}`:
|
||
|
|
||
|
`\|(\overrightarrow{p} - \overrightarrow{c}) \times \overrightarrow{n}\| = r`
|
||
|
|
||
|
The first equation allows us to express $s$ in terms of $x$ and $y$:
|
||
|
|
||
|
`s = \frac{\overrightarrow{c} \cdot \overrightarrow{n}}{\overrightarrow{q} \cdot \overrightarrow{n}}`
|
||
|
|
||
|
Replacing $s$ in the second equations yields:
|
||
|
|
||
|
```
|
||
|
\begin{align*}&\|(\frac{\overrightarrow{c} \cdot \overrightarrow{n}}{\overrightarrow{q} \cdot
|
||
|
\overrightarrow{n}} \cdot \overrightarrow{q} - \overrightarrow{c}) \times
|
||
|
\overrightarrow{n}\| \\
|
||
|
=\ &\|\frac{\overrightarrow{c} \cdot \overrightarrow{n}}{\overrightarrow{q} \cdot
|
||
|
\overrightarrow{n}} \cdot \overrightarrow{q} \times \overrightarrow{n} - \overrightarrow{c} \times
|
||
|
\overrightarrow{n}\| \\
|
||
|
=\ &r^2\end{align*}
|
||
|
```
|
||
|
|
||
|
Squaring and expanding the second equation gives us:
|
||
|
|
||
|
```
|
||
|
$$\begin{align*}
|
||
|
&((x \cdot s - c_x) \cdot n_y - (y \cdot s - c_y) \cdot n_x)^2 \\
|
||
|
+\ &((s - c_z) \cdot n_x - (x \cdot s - c_x) \cdot n_z)^2 \\
|
||
|
+\ &((y \cdot s - c_y) \cdot n_z - (s - c_z) \cdot n_y)^2 = r^2
|
||
|
\end{align*}
|
||
|
$$
|
||
|
```
|
||
|
|
||
|
|
||
|
----
|
||
|
|
||
|
## In conclusion
|
||
|
|
||
|
I hope this little interactive article will be useful for someone, anyone. Did
|
||
|
I spend way too much time thinking about ellipses for such an insignificant
|
||
|
result? Yes. But it's such neat technique I couldn't keep it for myself.
|
||
|
|
||
|
|
||
|
```{=html}
|
||
|
<!-- TODO: pre-compile katex to MathML only -->
|
||
|
<!-- <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.3/dist/katex.min.css" integrity="sha384-Juol1FqnotbkyZUT5Z7gUPjQ9gzlwCENvUZTpQBAPxtusdwFLRy382PSDx5UUJ4/" crossorigin="anonymous"> -->
|
||
|
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.3/dist/katex.min.js" integrity="sha384-97gW6UIJxnlKemYavrqDHSX3SiygeOwIZhwyOKRfSaf0JWKRVj9hLASHgFTzT+0O" crossorigin="anonymous"></script>
|
||
|
<script type="module">
|
||
|
const macros = {}
|
||
|
document.querySelectorAll('.math').forEach(elem => {
|
||
|
katex.render(elem.innerText, elem, {throwOnError: false, macros,
|
||
|
displayMode: !(elem.classList.contains('inline')), output:'mathml'})
|
||
|
})
|
||
|
</script>
|
||
|
```
|