
113

Practical Generic Programming over a Universe of Native

Datatypes

LUCAS ESCOT, TU Delft, Netherlands

JESPER COCKX, TU Delft, Netherlands

Datatype-generic programming makes it possible to define a construction once and apply it to a large class
of datatypes. It is often used to avoid code duplication in languages that encourage the definition of custom
datatypes, in particular state-of-the-art dependently typed languages where one can have many variants of
the same datatype with different type-level invariants. In addition to giving access to familiar programming
constructions for free, datatype-generic programming in the dependently typed setting also allows for the
construction of generic proofs. However, the current interfaces available for this purpose are needlessly hard
to use or are limited in the range of datatypes they handle. In this paper, we describe the design of a library
for safe and user-friendly datatype-generic programming in the Agda language. Generic constructions in our
library are regular Agda functions over a broad universe of datatypes, yet they can be specialized to native
Agda datatypes with a simple one-liner. Furthermore, we provide building blocks so that library designers can
too define their own datatype-generic constructions.

CCS Concepts: • Software and its engineering → Data types and structures; • Theory of computation

→ Type theory.

Additional Key Words and Phrases: Generic programming, Dependent types

ACM Reference Format:

Lucas Escot and Jesper Cockx. 2022. Practical Generic Programming over a Universe of Native Datatypes. Proc.
ACM Program. Lang. 6, ICFP, Article 113 (August 2022), 25 pages. https://doi.org/10.1145/3547644

1 INTRODUCTION

A generic program is a program or construction that can be applied for many different types, using
a single implementation. In this paper, we focus on datatype-generic programming [Bird et al.
1996; Böhm and Berarducci 1985; Jay 1995], i.e. constructions that can be applied on a class of
inductively defined datatypes. The motivation behind datatype-generic programming is to avoid
code duplication: by implementing programs generically, a single implementation can be used
for many different types. In addition, by using the same generic program to implement the same
functionality for different types, we can expect the same consistent behaviour at each type, which
would not be the case if it were implemented for each type by hand.

Datatype-generic programming is particularly important in dependently typed functional lan-
guages such as Agda [Agda Development Team 2021] or Idris [Brady 2021]. These languages
encourage the definition of new inductive datatypes over reuse of existing types to encode invariants
of the data and make impossible states unrepresentable. With this proliferation of new datatypes,
some constructions and functions ought to be available for every inductive datatype, and it would

Authors’ addresses: Lucas Escot, TU Delft, Delft, Netherlands, l.f.b.escot@tudelft.nl; Jesper Cockx, TU Delft, Delft,
Netherlands, j.g.h.cockx@tudelft.nl.

© 2022 Copyright held by the owner/author(s).
2475-1421/2022/8-ART113
https://doi.org/10.1145/3547644

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3547644
https://doi.org/10.1145/3547644

113:2 Lucas Escot and Jesper Cockx

be unreasonable to expect programmers to have to define them again and again, for every new
datatype introduced.
Language designers have proposed many solutions for automatically generating generic con-

structions on newly defined datatypes. Examples include both specialized ‘deriving’ mechanisms
such as the derivingmechanism in Haskell [Jones 2003], derive traits in Rust [Klabnik and Nichols
2019], ppx_derive in OCaml [Jane Street Group 2018], and general frameworks for compile-time
reflection such as template meta-programming in C++ [Abrahams and Gurtovoy 2004], Template
Haskell [Sheard and Jones 2002], and elaborator reflection in Idris [Christiansen and Brady 2016]
(which has also been adopted by Agda and Lean). However, all of them rely on the presence of
certain primitives for compile-time code generation built into the compiler. Moreover, the generated
programs are typically not guaranteed to be correct so they must pass through the typechecker
before they can be used.
The approach that we follow in this paper instead is to work with a universe of datatype

encodings [Chapman et al. 2010] that describe datatypes on which generic constructions can be
implemented. In a dependently typed language, it is possible to define an interpretation function
that maps these encodings to actual types and generic constructions to actual functions, without
having to re-typecheck each individual instance. This provides an internalised representation of
datatype declarations in the language itself, that can be freely inspected by the implementation of
generic programs. Or, in the words of McBride [2013]:

Once we have types that can depend computationally upon first class values,
metaprograms just become ordinary programs manipulating and interpret-
ing data which happen to stand for types and operations.

The main drawback of working with such a universe of encodings is that it forces the user of a
generic function to work with the (interpretation of the) encoded datatype, rather than the datatype
one would define by hand. As a consequence, the syntax is harder to understand and work with, and
editor support might not work properly for encoded datatypes. Recent work on datatype-generic
programming in Agda [effectfully 2020] combines the best of reflection and datatype encodings
by defining a type that relates a ‘native’ Agda datatype to its encoding, and providing a shallow
layer of reflection that automatically derives for a given Agda datatype both its encoding and the
connection between the two. Once this is done, it is possible to define generic constructions that
work on the encoding, and lift those constructions to work on the native Agda datatype using some
reflection. This approach does come with some drawbacks: generic constructions do not have the
expected computation rules, and the encoding is complex to work with.

In this paper, we present a new library1 for datatype-generic programming in Agda that describes
a specific class of parametrized and indexed datatypes and provides several generic constructions
on them. From the point of view of the user, these generic constructions are safe, reflection-free
Agda functions that can be specialized directly to a native Agda datatype with a simple one-liner.
From the point of view of a library developer, implementing a new generic construction is a matter
of writing a regular Agda function over our universe, which can use all of Agda’s features and
library functions directly without quoting.

Our main goal in the design of this library is to combine the best practices introduced by previous
developments, and to fix the remaining issues standing in the way of their adoption in practice.
Unlike effectfully [2020]2 we work with an explicit encoding of telescopes [Sijsling 2016], which
means we rely even less on ‘untrusted’ reflection that might lead to unexpected failures while

1The latest version of the library is hosted at https://github.com/flupe/generics. Artefacts associated with this paper are
publicly available [Escot and Cockx 2022]
2‘effectfully’ is a pseudonym, the real name of the author is not given.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

https://github.com/flupe/generics

Practical Generic Programming over a Universe of Native Datatypes 113:3

generating the code. Our code can be used with the –safe flag, a desirable feature if we intend
our library to be applicable in most situations. In addition, we greatly simplify the handling of
telescopes and datatypes that are built from types at different universe levels by using Agda’s
built-in sort Set𝜔 (introduced in Agda 2.6.0).

Because we rely only on shallow conversion functions, we greatly simplified the implementation
effort of effectfully [2020] all the while enabling generic constructions that reduce on open terms,
making them practical inside proofs.

Contributions.

• We present an encoding for a class of parametrized and indexed inductive datatypes in Agda,
including several Agda features such as datatypes at any given universe level, higher-order
inductive arguments, and irrelevant and implicit function types (Sect. 3).

• We give a precise specification of when an actual Agda datatype corresponds to a type in our
encoding (Sect. 3.3). We also provide a reflection macro that when given an Agda datatype
automatically constructs its encoding together with the proof relating it to the actual datatype
(Sect. 3.4).

• We define several generic constructions that work for all Agda datatypes that have an
encoding, in particular the datatype eliminator, case analysis, fold, the ‘no confusion’ prop-
erty [McBride et al. 2004], decidable equality, and a ‘show’ function.When applied to a specific
datatype, the type of these generic constructions makes no reference to the underlying
encoding, thus they can readily be used as-is in place of hand-written implementations
(Sect. 2).

• We provide an interface for defining new generic constructions, which includes the possibility
to generate constraints that restrict the class of datatypes a particular construction can be
applied to (Sect. 4).

2 SHOWCASE

We start by introducing our library from the perspective of the user by showcasing the generic
constructions it provides. In particular, we show how to instantiate the generic constructions in
the library to three types: the type of natural numbers (Nat), a type of length-indexed vectors
parametrized by the type of values (Vec A n), and the identity type (Id A x y) representing the
propositional equality between 𝑥 and 𝑦.

data Nat : Set where

zero : Nat

suc : Nat→ Nat

data Vec (A : Set) : Nat → Set where

[] : Vec A 0

:: : ∀ {n} → A → Vec A n → Vec A (suc n)

data Id (A : Set) (x : A) : A → Set where

refl : Id A x x

To derive a first-class encoding of the datatypes, we apply the deriveDesc macro:

natD : HasDesc Nat

natD = deriveDesc Nat

vecD : HasDesc Vec

vecD = deriveDesc Vec

idD : HasDesc Id

idD = deriveDesc Id

The types Nat, Vec, and Id now all have a description, i.e. an element of our generic universe of
Agda datatypes, that is needed to use the datatype-generic constructions of the library. These
descriptions are derived using Agda’s reflection mechanism. This is the only place where reflection

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

113:4 Lucas Escot and Jesper Cockx

is used: once a description is derived, every datatype-generic construction provided can be applied
safely. In other words, datatype-generic programs are safe, reflection-free Agda functions.

2.1 Generic Show

An easy but useful first example of a datatype-generic program is the show function for pretty-
printing the data structure:

record Show {a} (A : Set a) : Set a where

field show : A → String

open Show ⦃...⦄

The syntax open Show ⦃...⦄makes the show function available for use with instance search, similar
to using a type class in Haskell.3 Our library provides a function deriveShow that can be used to
construct an instance of the Show class for a simple datatype such as Nat without parameters:

instance showNat : Show Nat

showNat = deriveShow natD

On the other hand, because our length-indexed vectors Vec A nmay contain elements of A, deriving
an instance of Show (Vec A n) requires an instance of type Show A to be in scope:

instance showVec : ∀ {n} → ⦃ Show A ⦄→ Show (Vec A n)

showVec = deriveShow vecD

The generated show function works as expected, printing a structural representation of the datatype
element. For example, show 2 returns the string "suc (suc (zero))". For higher-order constructor
arguments it simply prints the string "?f".

2.2 Decidable Equality

Similarly, we provide a function deriveDecEq to derive decidable equality for a described datatype.
A datatype is said to have decidable equality if for any two values, we can decide whether they are
equal.

data Dec {a} (A : Set a) : Set a where

yes : A → Dec A

no : ¬ A → Dec A

record DecEq {a} (A : Set a) : Set a where

field _
?
=_ : (x y : A) → Dec (x ≡ y)

We derive decidable equality for natural numbers and vectors as follows:

instance decEqNat : DecEq Nat

decEqNat = deriveDecEq natD

instance decEqVec : ∀ {n}→ ⦃ DecEq A ⦄→ DecEq (Vec A n)

decEqVec = deriveDecEq vecD

Writing out the proof of decidable equality by hand the naive way instead would take a number
of cases quadratic in the number of constructors of the datatype.
One fundamental limitation of generic decidable equality comes from the fact that there is no

general way to derive it for datatypes with higher-order inductive arguments. To reflect this fact,
when applied to such a type the deriveDecEq function requires an instance constraint of the empty

3https://agda.readthedocs.io/en/v2.6.2/language/instance-arguments.html

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

https://agda.readthedocs.io/en/v2.6.2/language/instance-arguments.html

Practical Generic Programming over a Universe of Native Datatypes 113:5

dummy type HigherOrderArgumentsNotSupported.4 For example, consider the definition of the
W type:

data W (A : Set) (B : A → Set) : Set where

sup : (x : A) (f : B x → W A B)→W A B

WD : HasDesc W

WD = deriveDesc W

When trying to use deriveDecEq on WD, we get the following error:

No instance of type HigherOrderArgumentsNotSupported WD was found in

scope

2.3 Generic Induction Principle

A basic construction to reason about properties of inductive structures is the induction principle,
also known as the eliminator. While Coq users are used to getting an induction principle for free
when they introduce a datatype, Agda users have to implement one by hand, with the help of
built-in dependent pattern-matching. For example, the eliminator for Nat is defined by hand as
follows:

elimNat : ∀ {c} (P : Nat → Set c)

→ P zero→ (∀ n → P n → P (suc n)) → (n : Nat)→ P n

elimNat P Pz Ps zero = Pz

elimNat P Pz Ps (suc n) = Ps n (elimNat P Pz Ps n)

Using our library, you can get the definition of the eliminator for free:

elimNat′ : ∀ {c} (P : Nat→ Set c)

→ P zero → (∀ {n} → P n → P (suc n)) → (n : Nat)→ P n

elimNat′ = deriveElim natD

The shape of the derived eliminator is identical to the hand-written version, and it can be derived
for all described datatypes. Deriving it for the identity type gives us the expected 𝐽 eliminator.

elimId : ∀ {A c x} (P : ∀ {y}→ Id A x y → Set c)

→ P refl

→∀ {y} (e : Id A x y) → P e

elimId = deriveElim idD

Datatypes with higher-order inductive arguments are supported as well:

elimW : ∀ {A B c} (P : W A B → Set c)

→ (∀ x {f } → (∀ y → P (f y))→ P (sup x f))

→∀ w → P w

elimW = deriveElim WD

Note that type signatures for our generic constructions are only written above and in the following
examples to convince the reader that they have the expected type, but they are not mandatory.
The library computes it along with the definition itself. However, giving the type anyway is good
practice as it ensures that the generated type corresponds to the type we expected.

4The reason for using a custom empty type instead of the standard one is to inform the user of the reason why the
construction could not be derived.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

113:6 Lucas Escot and Jesper Cockx

An added benefit of our datatype-generic induction principle and all the other constructions is
that they reduce on open terms, meaning their computational behaviour holds definitionally. In
contrast to previous implementations [effectfully 2020] of datatype-generic constructions in the
dependently-typed setting where encodings are not first-class, this means anything defined using
some of our constructions can be reasoned about easily, and will behave as expected even when
applied to abstract terms.

elimNat′-suc : ∀ {c} (P : Nat → Set c) (H0 : P 0)

(HS : ∀ {n} → P n → P (suc n))

→∀ n → elimNat′ P H0 HS (suc n) ≡ HS (elimNat′ P H0 HS n)

elimNat′-suc P H x f = refl

elimId-refl : ∀ {A x c} (P : ∀ {y}→ Id A x y → Set c) (p : P refl)

→ elimId P p refl ≡ p

elimId-refl P p = refl

We also provide special cases of the induction principle, such as case analysis.

open import Generics.Constructions.Case

caseVec : ∀ {A c} (P : ∀ {n}→ Vec A n → Set c)

→ P [] → (∀ {n} x (xs : Vec A n)→ P (x :: xs))

→∀ {n} (xs : Vec A n) → P xs

caseVec = deriveCase vecD

Likewise, we implement a datatype-generic fold.

open import Generics.Constructions.Fold

foldNat : ∀ {c} {X : Set c} → X → (X → X)→ Nat→ X

foldNat = deriveFold natD

add : Nat → Nat → Nat

add x = foldNat x suc

Again, we demonstrate that our datatype-generic fold reduces properly on values that are not fully
evaluated.

add0 : ∀ x → add x 0 ≡ x

add0 x = refl

addS : ∀ x y → add x (suc y) ≡ suc (add x y)

addS x y = refl

2.4 No Confusion

McBride et al. [2004] present a recipe for constructing proofs that constructors of datatypes
are injective and disjoint, called the No Confusion principle. We provide a generic construction
noConfusion of this property in our library. We also implement the converse noConfusion′ which
is exactly the congruence of equality through datatype constructors. At the moment we do not yet
provide automatic construction of injectivity that follows from this principle, so some manual work
is still required to extract its proof. But this principle is sufficient to prove disjointness between
any two distinct constructors. For example, here we show how to extract the proof of injectivity of
the suc constructor from the generic noConfusion construction, and some other proofs:

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

Practical Generic Programming over a Universe of Native Datatypes 113:7

open import Generics.Constructions.NoConfusion

– noConfusion natD : {x y : Nat} → x ≡ y → NoConfusion natD x y

– noConfusion′ natD : {x y : Nat} → NoConfusion natD x y → x ≡ y

_ : ∀ x → NoConfusion natD (suc x) zero ≡ ⊥

_ = 𝜆 x → refl

_ : ∀ x y → NoConfusion natD (suc x) (suc y) ≡ (x ≡ y × ⊤)

_ = 𝜆 x y → refl

suc.zero : ∀ {x}→ suc x . zero

suc.zero = noConfusion natD

zero.suc : ∀ {x}→ zero . suc x

zero.suc = noConfusion natD

cong-suc : ∀ {x y} → x ≡ y → suc x ≡ suc y

cong-suc = noConfusion′ natD ◦ (_, tt)

inj-suc : ∀ {x y}→ suc x ≡ suc y → x ≡ y

inj-suc = proj1 ◦ noConfusion natD

This datatype-generic construction really shines for quickly proving that constructors are disjoint.
Without it, a quadratic number of definitions would be needed for complete coverage. Here, a single
definition can be used for all the proofs of disjointness.

The shape ofNoConfusion for more involved datatypes becomes quickly impractical when trying
to derive either injectivity or congruence, as using the homogeneous propositional equality forces
us to do more equality substitution than necessary. For this reason, we provide a datatype-generic
congruence with a nicer interface that does not rely on NoConfusion, with the only downside that
one has to use the heterogeneous equality from the standard library.

open import Relation.Binary.HeterogeneousEquality

open import Generics.Constructions.Cong

node-cons : {A : Set} {n m : Nat} → n � m

→ {x y : A} → x � y

→ {xs : Vec A n} {ys : Vec A m}→ xs � ys

→ x :: xs � y :: ys

node-cons = deriveCong vecD (suc zero)

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

113:8 Lucas Escot and Jesper Cockx

3 ENCODING AGDA DATATYPES IN AGDA

Now that we have seen what the library can do, we show how datatypes are encoded as first
class values so that datatype-generic programs can be implemented. Instead of relying on Agda’s
reflection API, our goal is to find a proper encoding for inspecting datatype definitions from inside
Agda itself, thus providing a safe environment for developing datatype-generic constructions. In
Agda, the general shape of the definition of a dataype D is the following:5

data D (𝑥1 : 𝑃1) · · · (𝑥𝑘 : 𝑃𝑘) : (𝑦1 : 𝑄1) → · · · → (𝑦𝑙 : 𝑄𝑙) → Set ℓ where

c1 : 𝐴1

· · ·
c𝑛 : 𝐴𝑛

This definition introduces a new type family D, parametrized by the telescope of parameters

(𝑥1 : 𝑃1) . . . (𝑥𝑘 : 𝑃𝑘), and indexed by the telescope of indices (𝑦1 : 𝑄1) . . . (𝑦𝑙 : 𝑄𝑙). The type family
D itself lives in the universe Set ℓ . The 𝑛 constructors (c1, . . . , c𝑛) are the introduction rules of type
family D. Their types (𝐴1, . . . , 𝐴𝑛) must be function types of the form

(𝑧1 : 𝐵1) → · · · → (𝑧𝑚 : 𝐵𝑚) → D 𝑥1 · · · 𝑥𝑘 𝑡1 · · · 𝑡𝑙

where 𝑧1, · · · , 𝑧𝑚 are the arguments of the constructor. Furthermore, each argument 𝑧𝑖 : 𝐵𝑖 is either
non-inductive, in which case 𝐵𝑖 does not mention D, or inductive, and 𝐵𝑖 must have the following
shape:

(𝑤1 : 𝐶1) → · · · →
(

𝑤𝑝 : 𝐶𝑝

)

→ D 𝑥 ′
1
· · · 𝑥 ′

𝑘 𝑡
′
1
· · · 𝑡 ′𝑙

This restriction is known as strict positivity, and (together with the termination check) rules out
non-terminating definitions, thus ensuring consistency of the theory. For inductive arguments,

Agda allows the parameters
(

𝑥 ′
1
, · · · , 𝑥 ′

𝑘

)

to be different than the parameters of the constructor

(𝑥1, · · · , 𝑥𝑘). However, in this work we consider them to be uniform, which simplifies the definition
of the datatype-generic constructions. Usually non-uniform parameters are instead considered as
indices,6 so this is not a real restriction to the class of datatypes we support. Agda makes it possible
to write mutually-defined datatypes, but this is beside the scope of this encoding. Likewise, we
ignore definitions by induction-recursion.
Our goal is thus to find a proper first-class encoding for the above parametrized and indexed

datatypes.We build upon existing encodings [effectfully 2020; Sijsling 2016], making three important
improvements:

• We use an explicit encoding of telescopes for parameters and indices [Sijsling 2016]. This
enables us to provide clean user-facing interfaces without having to rely on reflection and
unsafe manipulation of terms. With explicit telescopes, our descriptions for datatypes are fully
first-order, as can be seen for the 𝜋 constructor of the ConDesc type (see Sect. 3.2). One argument
describes the type of the argument in the constructor, depending on the value currently in scope.
The second argument is the remaining description, with a new value available in scope, whose
type is the one given by the first argument.

• Since Agda 2.6, it is possible to define datatypes living in Set𝜔 , and still be able to pattern match
on them. We make use of this new feature to avoid having to determine the precise universe
levels for telescopes and datatypes in advance, greatly simplifying the treatment of the different
universe levels that appear in the definition of a datatype.

5https://agda.readthedocs.io/en/v2.6.2/language/data-types.html
6This might require increasing the universe level of the datatype overall, unless a forcing analysis can determine the index
to be forced. This is out of the scope of our current work.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

https://agda.readthedocs.io/en/v2.6.2/language/data-types.html

Practical Generic Programming over a Universe of Native Datatypes 113:9

• Furthermore, by exclusively working with shallow conversion functions and accessibility predi-
cates, we are able to implement datatype-generic constructions that reduce even on open terms,
making them applicable to situations where reasoning about abstract values is an absolute
necessity, such as inside proof terms.

3.1 Encoding Telescopes

A telescope is a list of variable bindings together with their types, each of which can depend
on all the previously bound variables. Telescopes appear in the definition of an inductive type
for the parameters and indices as well as the arguments to each constructor and each inductive
constructor argument. The first crucial step in order to reason about inductive families is thus
to have a first-class model for their parameters and indices. Taking inspiration from the work of
Sijsling [2016], we define the following datatype of telescope descriptions by induction-recursion.

data Telescope {ℓ} (A : Set ℓ) : Set𝜔

levelOfTel : Telescope A → Level

⟦_⟧tel : (T : Telescope A)→ A→ Set (levelOfTel T)

A telescope is either empty, or it is an extension of an existing telescope with an additional variable,
by providing a type family S that produces a type for any given instantiation of the left telescope T :

data Telescope A where

𝜖 : Telescope A

⊢ : (T : Telescope A) {ℓ ′ : Level} (S : Σ A ⟦ T ⟧tel → Set ℓ ′)→ Telescope A

Contrary to Sijsling [2016], we define telescope descriptions inside Set𝜔 , and compute the upper
level using levelOfTel, after the fact. This makes it possible to describe telescopes containing sets
living at many different levels.

levelOfTel 𝜖 = lzero

levelOfTel (_⊢_ T {ℓ} _) = ℓ ⊔ levelOfTel T

Mutually with the definition of telescopes we define their interpretation as a nested sequence of
dependent products.

⟦ 𝜖 ⟧tel x = ⊤

⟦ T ⊢ S ⟧tel x = Σ (⟦ T ⟧tel x) (S ◦ (x ,_))

We define an instantiation of a telescope T at x to be an inhabitant of ⟦ T ⟧tel x.
The novelty is that we parametrize telescope descriptions by some type A so that each type in

the telescope can depend on a foreign value x : A. This enables us to describe parameters and
indices of an inductive family using two separate telescope descriptions, with the types of the
indices possibly depending on the parameters.
Concretely, parameters of a datatype are described by inhabitants of the type Telescope ⊤, and

given a parameter telescope P , indices are described by the inhabitants of a telescope extension
ExTele P , where ExTele is defined as follows:

ExTele : Telescope ⊤ → Set𝜔

ExTele P = Telescope (⟦ P ⟧tel tt)

This encoding enables us to describe inductive families where parameters appear in the types of the
indices, such as the identity type. The alternative definition ExTele P := ⟦ P ⟧tel tt → Telescope ⊤
would also allow this, but it is in fact too general, as it allows not just the types of the indices

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

113:10 Lucas Escot and Jesper Cockx

to depend on the parameters but also the structure of the telescope itself (e.g. the number of
parameters).

As an example, here is how we would describe the parameters (A : Set) and indices (n : Nat) of
the Vec inductive family of length-indexed lists:

P : Telescope ⊤

P = 𝜖 ⊢ const Set

I : ExTele P

I = 𝜖 ⊢ const Nat

We define further helper functions to interpret both parameter and index telescopes as a single
dependent product with ⟦_,_⟧xtel, and even interpret a third telescope depending on the same
parameters using ⟦_,_&_⟧xtel. This last function will be useful in the encoding of datatypes, where
we have two telescopes relying on parameters: indices and values in scope of constructors.

⟦_,_⟧xtel : ∀ P (I : ExTele P)→ Set _

⟦ P , I ⟧xtel = Σ (⟦ P ⟧tel tt) ⟦ I ⟧tel

⟦_,_&_⟧xtel : ∀ P (V I : ExTele P) → Set _

⟦ P , V & I ⟧xtel = Σ (⟦ P ⟧tel tt) 𝜆 p → ⟦ V ⟧tel p × ⟦ I ⟧tel p

We thus provide an instantiation for parameters and indices of Vec in a single step:

pi : ⟦ P , I ⟧xtel

pi = (tt , Nat) , (tt , 3)

Instead of interpreting a telescope as an iterated sigma type, we can also interpret it as an iterated
(curried) Π-type:

Curried′ : ∀ T → (⟦ T ⟧tel x → Set l)→ Set (l ⊔ levelOfTel T)

Curried′ 𝜖 Pr = Pr tt

Curried′ (T ⊢ S) Pr = Curried′ T 𝜆 t → (s : S (_ , t))→ Pr (t , s)

Curried : ∀ P I {ℓ} → (⟦ P , I ⟧xtel → Set ℓ)→ Set (ℓ ⊔ levelOfTel I ⊔ levelOfTel P)

Curried P I {ℓ} Pr = Curried′ P 𝜆 p → Curried′ I 𝜆 i → Pr (p , i)

The function uncurry converts from curried functions on the interpretation of a telescope to their
uncurried version:

uncurry′ : ∀ T (P : ⟦ T ⟧tel x → Set l) → Curried′ T P →∀ y → P y

uncurry′ 𝜖 P B tt = B

uncurry′ (T ⊢ S) P B (tx , gx) = uncurry′ T (𝜆 p → (s : S (_ , p))→ P (p , s)) B tx _

uncurry : ∀ P I {ℓ Pr}→ Curried P I {ℓ} Pr →∀ pi → Pr pi

uncurry P I C (p , i) = uncurry′ I _ (uncurry′ P _ C p) i

We also define a type Pred that is identical to Curried except it uses implicit instead of explicit
Π-types. We use it to compute the type of predicates over some datatype, whose quantification over
parameters and indices of the latter is left implicit. Given telescope descriptions for both parameters
and indices, we can compute the type of a family parametrized and indexed by those telescopes.

Indexed : ∀ P (I : ExTele P) ℓ → Set _

Indexed P I ℓ = Curried P I (const (Set ℓ))

Going back to our example for the Vec inductive family, we can check that indeed Vec has the
type Indexed P I lzero, and it is possible to provide all parameters and indices at once through
uncurrying:

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

Practical Generic Programming over a Universe of Native Datatypes 113:11

S = uncurry P I Vec ((tt , Nat) , (tt , 3))

– S normalises to ’Vec Nat 3’

What we presented here is a simplified version of the telescope encoding used in our library. Most
notably, our actual encoding takes into account whether parameters should be visible, hidden
or instance arguments, and whether they are relevant or irrelevant. We stick to the simplified
presentation for the rest of this paper, but the full version can be found in the code accompanying
the paper.

3.2 Datatype Descriptions

Now that we have an encoding of telescopes for parameters and indices, we turn our attention
to the encoding of datatypes, following the general overall strategy of Chapman et al. [2010]. We
first introduce a universe of descriptions for datatype constructors. Next, we come to descriptions
of datatypes. Finally, we give an interpretation of datatype descriptions as a functor on indexed
families. We diverge from previous work in that we do not construct the least fixed-point of the
interpretation 𝜇 and define generic constructions over it, but rather provide an interface for proving
how an existing type implements the description.

Describing constructors and inductive constructor arguments. We define a universe of constructor
descriptions ConDesc V , parametrised by a telescope V of values in scope:

data ConDesc (V : ExTele P) : Set𝜔 where

var : (((p , v) : ⟦ P , V ⟧xtel)→ ⟦ I ⟧tel p) → ConDesc V

𝜋 : ∀ {ℓ} (S : ⟦ P , V ⟧xtel → Set ℓ) (C : ConDesc (V ⊢ S)) → ConDesc V

⊗ : (A B : ConDesc V) → ConDesc V

This description characterizes the shape of a given datatype constructor: how many arguments it
contains, the order of these arguments, and which of those are inductive arguments. In addition, this
encoding conveys how the final indices of the constructor are computed from previous arguments,
where the types of arguments can depend on values previously bound in the constructor.

• var denotes the empty constructor description, and holds a function to compute indices
of type ⟦ I ⟧tel p, given an instantiation of parameters p : ⟦ P ⟧tel tt and values in scope
v : ⟦ 𝑉 ⟧tel p.

• 𝜋 describes a constructor that expects an argument of type S (p , v), in scope for the types of
the subsequent constructor arguments in C. Note that the type S (p , v) depends on values 𝑣
already bound. Because we define ConDesc in Set𝜔 , S (p , v) can live at any universe level ℓ .

• _⊗_ describes a constructor with an inductive argument A and the remainder of the con-
structor B. The novel idea from effectfully [2016b] is to use ConDesc both to describe the
shape of constructors and the shape of inductive arguments.

As noted in Sect. 3, Agda allows higher-order inductive arguments in datatype constructors,
therefore an encoding of datatypes should account for the kind of inductive arguments appearing
inside each constructor. Under the interpretation of ConDesc as the representation of an inductive
constructor argument, var represents a first-order inductive argument with specified indices, while
𝜋 characterizes higher-order inductive arguments. In this case, _⊗_ is used to describe a pair of
inductive arguments.
We combine this encoding with explicit handling of values in scope through the telescope 𝑉

[Sijsling 2016], so that descriptions themselves are fully first-order. On the one hand, this allows
Agda to accept the definition of ConDesc without any unsafe pragmas, on the other hand it enables
us to precisely describe Agda datatypes, and nothing more. As was the case for telescopes, our

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

113:12 Lucas Escot and Jesper Cockx

actual encoding stores more information about arguments, their relevance and visibility, which we
omit here.
As an example, we describe some constructors of datatypes from Section 2.

Constructor Description
zero : Nat var (const tt)
suc : Nat → Nat var (const tt) ⊗ var (const tt)
[] : Vec 𝐴 0 var (const (tt , 0))
refl : Id 𝐴 𝑥 𝑥 var (𝜆 ((_ , x) , _) → tt , x)

Describing datatypes. Once the shape of every constructor of a datatype has been described, we
can give a description for the full datatype as a list of descriptions for each of its constructors:

data DataDesc P (I : ExTele P) : Nat→ Set𝜔 where

[] : DataDesc P I 0

:: : ∀ {n} (C : ConDesc P I 𝜖) (D : DataDesc P I n) → DataDesc P I (suc n)

lookupCon : ∀ {P I n}→ DataDesc P I n → Fin n → ConDesc P I 𝜖

lookupCon (C :: D) zero = C

lookupCon (C :: D) (suc k) = lookupCon D k

This is essentially the type Vec of length-indexed lists from standard library, with the notable
difference that the universe of elements lives in Set𝜔 . It is in fact the main drawback of using Set𝜔 :
most if not all of the tools of the standard library are no longer applicable and need to be duplicated.
Our encoding, much like effectfully [2020], can describe parametrized and indexed

datatypes defined at any given level. It supports higher-order inductive arguments, but nested
datatypes are not allowed. We decided to forbid inductive arguments with different parameters
as we found it made generic constructions such as the induction principle less practical to use.
Mutually-defined datatypes and datatypes defined by induction-recursion are not supported.

Interpreting datatype descriptions. We define the interpretation of a datatype description D as
a functor on ⟦ 𝑃 , 𝐼 ⟧xtel-indexed sets. That is, given a type family X : ⟦ 𝑃 , 𝐼 ⟧xtel → Set,
the interpretation ⟦ D ⟧Data 𝑋 results in a new type family indexed by ⟦ 𝑃 , 𝐼 ⟧xtel that is an
iterated dependent pair containing the arguments of constructors, where recursive arguments are
interpreted as values of type 𝑋 .

⟦_⟧Data : ∀ {P I ℓ n} (D : DataDesc P I n) → (⟦ P , I ⟧xtel → Set ℓ)

→ (⟦ P , I ⟧xtel → Set𝜔)

To give this interpretation, we first need the action of a constructor description 𝐶 on an indexed
family 𝑋 , noted ⟦ 𝐶 ⟧Con 𝑋 , whose shape mimics the one of the constructor, but where inductive
arguments are interpreted as values of𝑋 . The interpretation of inductive arguments is in turn taken
care of with the interpretation of an inductive argument description 𝐶 on 𝑋 , noted ⟦ 𝐶 ⟧IndArg 𝑋 .
We omit the definition of levelIndArg and levelCon that compute the level at which the interpretation
of descriptions should live.

levelIndArg levelCon : ∀ {V } → ConDesc P I V → Level→ Level

⟦_⟧Con : ∀ {V ℓ} (C : ConDesc P I V)→ (⟦ P , I ⟧xtel → Set ℓ)

→ (⟦ P , V & I ⟧xtel → Set (levelCon C ℓ))

⟦_⟧IndArg : ∀ {V ℓ} (C : ConDesc P I V) → (⟦ P , I ⟧xtel→ Set ℓ)

→ (⟦ P , V ⟧xtel→ Set (levelIndArg C ℓ))

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

Practical Generic Programming over a Universe of Native Datatypes 113:13

As noted before, we use the same type to describe both constructors and inductive constructor
arguments, so the only difference lies in which interpretation function we use. These two inter-
pretations of descriptions are what effectfully [2016b] refers to as computational and propositional

interpretations. Notice how, in contrast to the implementation of effectfully [2020], we do not try
to keep the resulting family at the same level as the input family. Because we don’t parametrize
descriptions by the upper bound level, and compute the level of interpretations from the description,
our implementation of the interpretation is much closer to the one of Chapman et al. [2010].

Descriptions for inductive arguments are interpreted as such:

⟦ var f ⟧IndArg X (p , v) = X (p , f (p , v))

⟦ 𝜋 S C ⟧IndArg X pv@(p , v) = (s : S pv) → ⟦ C ⟧IndArg X (p , v , s)

⟦ A ⊗ B ⟧IndArg X pv = ⟦ A ⟧IndArg X pv × ⟦ B ⟧IndArg X pv

We see here that indeed, ⟦ var f ⟧Con X pv reduces to X (p , f (p , v)), so the description of first-
order inductive arguments is interpreted as type 𝑋 with the proper indices. And ⟦ 𝜋 S C ⟧Con X pv

reduces to (s : S 𝑝𝑣) → · · · → X · · · , a function type ending with 𝑋 with the proper indices.
These are precisely the types of inductive arguments allowed by Agda at the beginning of Sect. 3.

Constructor descriptions, in turn, are interpreted as such:

⟦ var x ⟧Con X (p , v , i) = i ≡ x (p , v)

⟦ 𝜋 S C ⟧Con X pvi@(p , v , i) = Σ[s ∈ S (p , v)] ⟦ C ⟧Con X (p , (v , s) , i)

⟦ A ⊗ B ⟧Con X pvi@(p , v , _) = ⟦ A ⟧IndArg X (p , v) × ⟦ B ⟧Con X pvi

The resulting indexed family is an iterated dependent pair, ending with a witness that the indices
computed by the constructor are consistent with the indices of the family. Coming back to natural
numbers, we show in this table the interpretation of each constructor:

Constructor (𝐶) ⟦ 𝐶 ⟧Con X (tt , tt , tt)
zero : Nat tt ≡ tt

suc : Nat → Nat X (tt , tt) × (tt ≡ tt)

To give an element in the interpretation of zero, no argument is required apart from a proof that
tt ≡ tt, trivially refl. To give an element in the interpretation of suc, an inductive argument is
required, of type 𝑋 (tt , tt), and again, a trivial proof.

The interpretation of a datatype description is simply a dependent pair composed of the choice
of constructor, along with an element of the interpretation of said constructor.

record ⟦_⟧Data {n ℓ} (D : DataDesc P I n) (X : ⟦ P , I ⟧xtel → Set ℓ)

(pi : ⟦ P , I ⟧xtel) : Set𝜔 where

constructor _,_

field k : Fin n

val : ⟦ lookupCon D k ⟧Con X (proj1 pi , tt , proj2 pi)

We have to place this interpretation in Set𝜔 since it contains the interpretation of a constructor,
which lives in different universes depending on the choice of constructor. Because effectfully [2020]
follows the approach of Chapman et al. [2010] by taking the least fixed point 𝜇 of this interpretation
function, they had to make sure that the interpretation preserves the level of the input family,
which is the main reason for their complex and verbose encoding. Thankfully, as we no longer
need to rely 𝜇, we are free to simplify the interpretation by embracing Set𝜔 .

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

113:14 Lucas Escot and Jesper Cockx

3.3 Relating to Native Agda Datatypes

So far, we have seen how to describe inductive families through the means of datatype descriptions
and telescope encodings, and have shown how to interpret those as a type family that behaves as
would a datatype introduced via a standard data declaration.

However, rather than define the least-fixed fixpoint 𝜇 𝐷 of the interpretation ⟦ 𝐷 ⟧Data as
per [Chapman et al. 2010], we choose to only work with the interpretation of 𝐷 on the concrete
underlying Agda inductive family for which 𝐷 is a description. For this purpose, we define the
following record type HasDesc A, which helps bridge the gap between a concrete Agda type family
A and its encoding:

record HasDesc {P I } {ℓ} (A : Indexed P I ℓ) : Set𝜔 where

A′ : ⟦ P , I ⟧xtel → Set ℓ

A′ = uncurry P I A

field

The first step required to attach a description to A is, unsurprisingly, to provide an actual description
D, using the same telescopes P and I .

{n} : Nat

D : DataDesc P I n

We additionally require all constructors to be named, so that this information can be used in our
datatype-generic Show implementation.

names : Vec String n

Then, we ask for shallow conversion functions going from A′ to ⟦ D ⟧Data A′ and back, along with
proofs that they are inverse of one another.

constr : ∀ {pi}→ ⟦ D ⟧Data A′ pi → A′ pi

split : ∀ {pi}→ A′ pi → ⟦ D ⟧Data A′ pi

constr◦split : ∀ {pi} (x : A′ pi) → constr (split x) ≡ x

split◦constr : ∀ {pi} (x : ⟦ D ⟧Data A′ pi)→ split (constr x) ≡𝜔 x

This differs from [effectfully 2020], [Sijsling 2016] and other attempts in that they try to derive
from : A′ 𝑝𝑖 → 𝜇 D 𝑝𝑖 and to : 𝜇 D 𝑝𝑖 → A′ 𝑝𝑖 that fully convert any value to and back from
an internal representation. Here, we take the approach of using more atomic operations, constr
only unfolding a value once to retrieve the outermost constructor, with the underlying inductive
occurences still referring to the original type family. Crucially, shallow conversion functions allow
us to make progress on open terms.
But an ingredient is missing. Most datatype-generic constructions rely on recursing on an

inductive element, stressing the need for recursively applying these conversion functions. Because
the inductive arguments in the return value of split are elements of the underlying type family, we
need to call split on them to inspect which constructor they are made of, and so on. However, since
the inductive arguments in split 𝑥 are not syntactically smaller than 𝑥 , Agda’s termination checker
will refuse any recursive definition implemented as such.

Our way out is to introduce an accessibility predicate to make use of the fact that 𝐴 ought to be
well-founded. We begin by introducing AllData, AllIndArg and AllCon such that AllData 𝑃𝑟 𝐷 𝑑

states that 𝑃𝑟 : 𝑋 (𝑝 , 𝑖) → Set ℓ holds for every 𝑥 : 𝑋 (𝑝 , 𝑖) in 𝑑 .

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

Practical Generic Programming over a Universe of Native Datatypes 113:15

AllIndArg : ∀ {V p} {X : ⟦ P , I ⟧xtel → Set ℓ}

(Pr : ∀ {i}→ X (p , i)→ Set𝜔) (C : ConDesc P I V)

→∀ {v} → ⟦ C ⟧IndArg X (p , v) → Set𝜔

AllIndArg Pr (var _) x = Pr x

AllIndArg Pr (𝜋 S C) x = (s : S _)→ AllIndArg Pr C (x s)

AllIndArg Pr (A ⊗ B) (xa , xb) = AllIndArg Pr A xa 𝜔×𝜔 AllIndArg Pr B xb

AllCon : ∀ {V p} {X : ⟦ P , I ⟧xtel→ Set ℓ}

(Pr : ∀ {i}→ X (p , i)→ Set𝜔) (C : ConDesc P I V)

→∀ {v i}→ ⟦ C ⟧Con X (p , v , i) → Set𝜔

AllCon Pr (var _) x = ⊤𝜔

AllCon Pr (𝜋 _ C) (_ , x) = AllCon Pr C x

AllCon Pr (A ⊗ B) (xa , xb) = AllIndArg Pr A xa 𝜔×𝜔 AllCon Pr B xb

AllData : ∀ {p n} {X : ⟦ P , I ⟧xtel → Set ℓ}

(Pr : ∀ {i} → X (p , i) → Set𝜔)

(D : DataDesc P I n)

→∀ {i} ((k , x) : ⟦ D ⟧Data X (p , i))→ Set𝜔

AllData Pr D (k , x) = AllCon Pr (lookupCon D k) x

Constructor (𝐶) 𝑥 : ⟦ 𝐶 ⟧Con X (tt , tt , tt) AllCon 𝑃𝑟 𝐶 𝑥

zero : Nat refl : tt ≡ tt ⊤𝜔
suc : Nat → Nat (𝑛 , refl) : X (tt , tt) × (tt ≡ tt) (𝑃𝑟 𝑛) 𝜔×𝜔 ⊤𝜔

Then, we introduce the accessibility predicate Acc 𝑥 stating that 𝑥 is accessible if all elements of
split 𝑥 are accessible.

data Acc {pi} (x : A′ pi) : Set𝜔 where

acc : AllData Acc D (split x) → Acc x

Finally, we simply add as a requirement in the HasDesc record a proof that the inductive family
being described is well-founded, that is, any 𝑥 is accessible.

field wf : ∀ {pi} (x : A′ pi) → Acc x

Thus, any datatype-generic construction needing to do recursion on some 𝑥 can first retrieve a
proof that 𝑥 is accessible with wf 𝑥 , and then recurse on this witness rather than 𝑥 .
This is all that is required for us to implement practical datatype-generic constructions, as we

demonstrate in Sect. 4.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

113:16 Lucas Escot and Jesper Cockx

3.4 Deriving the Encoding

We showcase here the final encoding of natural numbers:

natD : HasDesc {P = 𝜖} {I = 𝜖} Nat

natD .n = 2

natD .D = var (const tt) :: (var (const tt) ⊗ var (const tt)) :: []

natD .names = "zero" :: "suc" :: []

natD .constr (zero , refl) = 0

natD .constr (suc zero , n , refl) = suc n

natD .split 0 = (Fin.zero , refl)

natD .split (suc n) = (Fin.suc Fin.zero , n , refl)

natD .constr◦split 0 = refl

natD .constr◦split (suc x) = refl

natD .split◦constr (zero , refl) = refl

natD .split◦constr (suc zero , n , refl) = refl

natD .wf Nat.zero = Accessibility.acc tt𝜔

natD .wf (suc x) = Accessibility.acc (natD .wf x , tt𝜔)

It should become clear that although every field of the record is very easy to fill in, we cannot
reasonably expect users to provide their own instances of HasDesc A for every family A they want
to derive generic constructions for. Therefore, we need a way to automate this process. This is
the purpose of the deriveDesc macro from our library, that we showcased in Sect. 2. As the details
of the implementation of this macro using the reflection API are rather technical but ultimately
unsurprising, we omit its definition here. The interested reader can refer to the supplementary
material for the full implementation.

4 DEFINING DATATYPE-GENERIC CONSTRUCTIONS

Now that we have settled on a suitable encoding, it is time to build datatype-generic constructions.
In this section, we show in detail how two of our generic constructions are defined: the generic
show function and the generic induction principle. To ease the implementation of these generic
constructions, we explain how our library introduces a generally usable type Helpers to specify
the constraints that are required for the construction. To define a generic construction, we then
follow the following recipe:

• The first step is to refine the Helpers datatype to specify the type of additional information
and instances Agda should look for.

• Then, from a module parametrized by an instance of appropriate helpers, we define the
desired construction on any value for which we have an accessibility witness, recursing on
the latter.

• Finally, we define the user-facing function by calling the previous construction while using
the witness of well-foundedness from the encoding.

4.1 Generic Helpers

In many situations, it is not sufficient to simply know the shape of datatypes, and more information
about types appearing inside datatype constructors is required. For example, recall how an instance
of Show A was needed to derive an instance of Show (Vec A n). More generally, to derive an
instance of Show D for some inductive datatype D, we need an instance of Show A for each type A
appearing in the constructors of D. Since the same is required for deriving DecEq D, we provide

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

Practical Generic Programming over a Universe of Native Datatypes 113:17

tools for requesting instances of Arg A for any A appearing in constructors and any given type
family Arg.
That is, given the family Arg : ∀ {ℓ} → Set ℓ → Set (levelArg l), of which we want instances,

and the parameter Ind : ∀ {𝑉 } (𝐶 : ConDesc P V I ℓ) → Set𝜔 (whose role we explain below), we
define the inductive datatype ConHelper p C, indexed by the constructor description it is providing
further information for:

data ConHelper p {V } : ConDesc P I V → Set𝜔 where

instance

For an empty constructor, no extra information is required.

var : ∀ {f }→ ConHelper p (var f)

When a constructor expects an argument of type S (p , v), its associated helper is made out of an
instance of Arg (S (p , v)) and a helper for the remainder of the constructor.

pi : {S : ⟦ P , V ⟧xtel→ Set ℓ} {C : ConDesc P I (V ⊢ S)}

→ ⦃ ∀ {v} → Arg (S (p , v)) ⦄→ ⦃ ConHelper p C ⦄

→ ConHelper p (𝜋 S C)

Finally, when a constructor has an inductive argument described by A, its helper is composed of an
instance of Ind A and a helper for the remaining part.

prod : {A B : ConDesc P I V }

→ ⦃ Ind A ⦄ → ⦃ ConHelper p B ⦄→ ConHelper p (A ⊗ B)

The purpose of Ind is to control how the presence of inductive arguments must affect the automated
helper resolution. By choosing Ind ≡ 𝜆 _ → ⊤𝜔 as we do for our datatype-generic Show

implementation, all inductive arguments are permitted. Were we to define Ind ≡ 𝜆 _ → ⊥𝜔 , the
instance search would fail for any datatype containing inductive arguments. In our datatype-generic
implementation of DecEq, we make it so that Ind only allows first-order inductive arguments by
choosing Ind ≡ OnlyFO defined as such: 7

OnlyFO : ∀ {V } (C : ConDesc P I V) → Set𝜔

OnlyFO (var x) = ⊤𝜔

OnlyFO (𝜋 S C) = HigherOrderArgumentsNotSupported

OnlyFO (A ⊗ B) = OnlyFO A 𝜔×𝜔 OnlyFO B

Then it is only a matter of stating that a helper for a datatype description D is made out of
instances of ConHelper p C, one for every constructor description C in D.

data Helpers p : DataDesc P I n → Set𝜔 where

instance nil : Helpers p []

cons : ∀ {n} {C : ConDesc P I 𝜖} {D : DataDesc P I n}

→ ⦃ ConHelper p C ⦄→ ⦃ Helpers p D ⦄→ Helpers p (C :: D)

lookupHelper : Helpers p D → (k : Fin n)→ ConHelper p (lookupCon D k)

Because these two definitions have constructor instances, it suffices to prefix datatype-generic
functions with an instance argument of type Helpers p D to make Agda search for the needed
instances available in scope. Defining all the arguments to the constructors of Helpers p D and
ConHelpers p c as instance arguments is what makes the recursive instance search happen. Since

7⊤𝜔 , ⊥𝜔 and _𝜔×𝜔_ are redefinitions of ⊤, ⊥ and _×_ in Set𝜔 . HigherOrderArgumentsNotSupported is a custom datatype
with no constructors, for error-reporting purposes.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

113:18 Lucas Escot and Jesper Cockx

helpers are indexed by constructor descriptions, the path to follow while seeking instances is fully
syntax-directed and determined by the description of the datatype at hand.

4.2 Generic Show

We follow the recipe given at the start of this section to define a datatype-generic Show instance.
Given (𝐴 : Indexed P I ℓ) and (𝐻 : HasDesc 𝐴), we start by refining the type of helpers we are
interested in. In this case, we want an instance of Show for every type of value appearing in our
datatype constructors (Arg ≡ Show). Furthermore, we allow high-order inductive arguments, even
though we only display those that are first-order (𝐼𝑛𝑑 ≡ 𝜆 _ → ⊤𝜔).

open HasDesc H

open Helpers P I Show (𝜆 _ →⊤𝜔)

ShowHelpers : ∀ p → Set𝜔

ShowHelpers p = Helpers p D

Given helpers (SH : ShowHelpers 𝑝) for our current datatype and parameters 𝑝 , we define a
generic show function using 3 mutually-recursive functions: To display a value, we retrieve its
outermost constructor along with its arguments, then return the constructor’s name concatenated
with the displayed arguments.

show-wf : (x : A′ (p , i))→ Acc x → String

show-wf x (acc xacc) with split x

... | (k , x’) = Vec.lookup names k ++ "("

++ showCon (lookupCon D k) (lookupHelper SH k) x’ xacc

++ ")"

If one argument is a value of some other type, we retrieve the appropriate Show instance provided
by the helper and use it. We only display inductive arguments if they are first-order, recursing on
the accessibility witness.

showCon : (C : ConDesc P I V) (H : ConHelper p C) (x : ⟦ C ⟧Con A′ (p , v , i))

→ AllCon Acc C x → String

showCon _ var x _ = ""

showCon _ (pi {C = C} ⦃ SS ⦄ ⦃ HC ⦄) (x , y) yacc

= show ⦃ SS ⦄ x ++ "," ++ showCon C HC y yacc

showCon _ (prod {A} {var _} ⦃ HA ⦄) (x , _) (xacc , _)

= showIndArg A x xacc

showCon _ (prod {A} {B} ⦃ HA ⦄ ⦃ HB ⦄) (x , y) (xacc , yacc)

= "(" ++ showIndArg A x xacc ++ "), " ++ showCon B HB y yacc

showIndArg : (C : ConDesc P I V) (x : ⟦ C ⟧IndArg A′ (p , v))

→ AllIndArg Acc C x → String

showIndArg (var i) x xacc = show-wf x xacc

showIndArg (𝜋 S C) x _ = "?f"

showIndArg (A ⊗ B) (x , y) (xacc , yacc) =

"(" ++ showIndArg A x xacc ++ "), (" ++ showIndArg B y yacc ++ ")"

The public interface simply computes the accessibility witness before recursing.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

Practical Generic Programming over a Universe of Native Datatypes 113:19

show’ : A′ (p , i)→ String

show’ x = show-wf x (wf x)

Using this construction to display a natural number, we get:

_ : show’ natD 5 ≡ "suc(suc(suc(suc(suc(zero())))))"

_ = refl

The deriveShow from our library is obtained by properly currying show’ over the telescopes
of parameters and indices, so that each of them are given sequencially to deriveShow rather than
together inside a deeply-nested sigma type.

4.3 Generic Induction Principle

As demonstrated by Chapman et al. [2010], formulating the induction principle on an universe
of datatypes is straightforward. The challenge we face here is the one of defining an induction
principle that behaves just as if it were handwritten. Given a predicate or motive on a concrete
Agda datatype:

Pr : Pred′ I 𝜆 i → A′ (p , i)→ Set c

The first step is to compute the type of the elimination rule for each constructor [McBride 2002].
Given a constructor, its elimination rule must convey that if Pr holds for some recursive occurence,
then it holds for any value built using said constructor applied to them.

Pr′ : A′ (p , i) → Set c

Pr′ {i} = unpred′ I _ Pr i

levelElimIndArg levelElimCon : ConDesc P I V → Level

MethodIndArg : (C : ConDesc P I V) → ⟦ C ⟧IndArg A′ (p , v)→ Set (levelElimIndArg C)

MethodIndArg (var _) x = Pr′ x

MethodIndArg (𝜋 S C) x = (s : S _) →MethodIndArg C (x s)

MethodIndArg (A ⊗ B) (mA , mB) = MethodIndArg A mA × MethodIndArg B mB

MethodCon : (C : ConDesc P I V)

→ (∀ {i}→ ⟦ C ⟧Con A′ (p , v , i) → Set c)

→ Set (levelElimCon C)

MethodCon (var x) f = f refl

MethodCon (𝜋 S C) f = (s : S _) →MethodCon C (f ◦ (s ,_))

MethodCon (A ⊗ B) f = {g : ⟦ A ⟧IndArg A′ (p , _)}

(Pg : MethodIndArg A g)

→ MethodCon B (f ◦ (g ,_))

Methods : ∀ k → Set (levelElimCon (lookupCon D k))

Methods k = MethodCon (lookupCon D k) 𝜆 x → Pr′ (constr (k , x))

In the code above, note how for the MethodCon (𝐴 ⊗ 𝐵) 𝑓 case i.e. when there is an inductive
argument in a constructor, the induction method must quantify over any such value (g) and requires
a proof that Pr holds for g (Pg). We omit the definition of levelElimIndArg and levelElimCon. If we
do a sanity check and compute the type of the elimination rules for natural numbers, we get:

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

113:20 Lucas Escot and Jesper Cockx

Methods zero ≡ Pr 0

Methods (suc zero) ≡ ∀ {n} → Pr n → Pr (suc n)

For vectors, we have:

Methods zero ≡ Pr []

Methods (suc zero) ≡ ((n : Nat) (x : A) {xs : Vec A n}→ Pr xs → Pr (x :: xs))

Assuming we have been given all the elimination methods (𝑚𝑒𝑡ℎ𝑜𝑑𝑠 : ∀ 𝑘 → Methods 𝑘), we show
that we can prove the motive 𝑃𝑟 holds for any value, as such:

• Wefind the outermost constructor of the input value, and select the corresponding elimination
rule.

• We iteratively give all the arguments to the elimination method, calling the elimination
principle recursively for every inductive argument.

• When all arguments have been supplied, what remains of the method is simply the proof
that the property holds for the input value, which we return.

elimData-wf : (x : ⟦ D ⟧Data A′ (p , i))→ AllData Acc D x → Pr′ (constr x)

elim-wf : (x : A′ (p , i))→ Acc x → Pr′ x

elim-wf x (acc a) = subst Pr′ (constr◦split x) (elimData-wf (split x) a)

elimData-wf (k , x) a = elimCon (lookupCon D k) (methods k) x a

where

elimIndArg : (C : ConDesc P I V) (x : ⟦ C ⟧IndArg A′ (p , v))

→ AllIndArg Acc C x → MethodIndArg C x

elimIndArg (var _) x a = elim-wf x a

elimIndArg (𝜋 S C) x a = 𝜆 s → elimIndArg C (x s) (a s)

elimIndArg (A ⊗ B) (xa , xb) (aa , ab)

= elimIndArg A xa aa , elimIndArg B xb ab

elimCon : (C : ConDesc P I V)

{mk : ∀ {i}→ ⟦ C ⟧Con A′ (p , v , i) → ⟦ D ⟧Data A′ (p , i)}

(mth : MethodCon C (𝜆 x → Pr′ (constr (mk x))))

(x : ⟦ C ⟧Con A′ (p , v , i))

→ AllCon Acc C x → Pr′ (constr (mk x))

elimCon (var _) mth refl a = mth

elimCon (𝜋 _ C) mth (s , x) a = elimCon C (mth s) x a

elimCon (A ⊗ B) mth (xa , xb) (aa , ab)

= elimCon B (mth (elimIndArg A xa aa)) xb ab

elim : (x : A′ (p , i))→ Pr′ x

elim x = elim-wf x (wf x)

Notice how since elimData-wf proves Pr′ (constr 𝑥) for any accessible 𝑥 , andwe apply elimData-wf

on split 𝑥 in elim-wf, we have to use subst in order to go from a proof of Pr′ (constr (split 𝑥)) to
a proof of Pr′ 𝑥 . Because constr and split are shallow conversion functions in the sense that they

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

Practical Generic Programming over a Universe of Native Datatypes 113:21

only unfold and reconstruct the outermost constuctor of a value, it is always possible to define
constr◦split such that it computes to refl as soon as the outermost constructor of 𝑥 is known.
If such is the case, subst disappears entirely and computation goes through on open terms. We

made sure that our deriveDesc macro always generates proofs that satisfy this requirement.
This implementation thus highlights the following properties of our encoding:

• Because parameters and indices are explicitely accounted for in the encoding, we are able to
define constructions whose types are identical to the handwritten version.

• Because we rely solely on shallow conversion functions rather than convert full terms to an
internal representation, we are able to define constructions that never get stuck on equality
proofs, leading to a much more user-friendly computational behaviour.

• Thanks to Set𝜔 , the implementation of datatype-generic constructions in Agda is made much
simpler, as we no longer have to find tricks to emulate cumulativity [effectfully 2016c].

5 RELATED WORK

Two main ideas were crucial in the development of datatype-generic programming in dependent
type theory. First, the notion of a universe with an interpretation function was introduced by
Martin-Löf [1984], and was equipped with an elimination principle by Nordström et al. [1990],
enabling the definition of generic functions by induction on the universe. Dybjer and Setzer [1999]
gave a systematic study of universes as inductive-recursive types. Meanwhile, outside of the context
of type theory Böhm and Berarducci [1985] introduced the idea of writing generic programs as
functions over codes representing a datatype, which was further developed by Bird et al. [1996], Jay
[1995], Jansson and Jeuring [1997] (PolyP), and Hinze and Jeuring [2003] (Generic Haskell). These
two ideaswere combined by Benke et al. [2003], who gave the first real application of a type-theoretic
universe to the implementation of datatype-generic programs. Writing datatype-generic programs
idea proved to be one of the most successful applications of full-spectrum dependent types, and
was further developed by Morris [2007], Altenkirch et al. [2006], Morris et al. [2009], and Weirich
and Casinghino [2010].

Chapman et al. [2010] introduced a closed dependent type theory where all datatypes are given
by a code in a universe, including the type of codes itself, which formed the basis of the Epigram
2 prototype. This approach was extended in the work by Évariste Dagand [Dagand and McBride
2012; Évariste Dagand 2013], who gives an algorithm for elaborating a datatype definition to a code
in the universe, which can be compared to our own algorithm for computing the code of a given
Agda datatype through reflection.

Andjelkovic [2011] solves the problem that some generic operations (e.g. decidable equality)
cannot be defined for all types in the universe by indexing the universe by the kind of features it
uses. In contrast, we take a more flexible approach by emitting a (possibly unsatisfiable) constraint
specific to the generic construction.

Recent attempts at defining a practical encoding of datatypes in Agda include the work by Diehl
and Sheard [Diehl 2017; Diehl and Sheard 2013, 2014], Sijsling [2016] and effectfully [effectfully
2016a,b]. Each of these implementations come with their own set of limitations.

• The work of Sijsling [2016] can only encode datatypes living in Set0. Parameters and indices
are part of the encoding, but indices cannot depend on parameters. Only first-order inductive
arguments are permitted. Because this work is focusing on ornaments, only a generic fold is
implemented, and it operates on the encoded datatypes. It was never made available as a library
of reusable components.

• The generic-elim library [Diehl and Sheard 2014] is slightly more permissive regarding the level
at which datatypes can be defined, but does not attempt to bridge the gap between concrete

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

113:22 Lucas Escot and Jesper Cockx

datatypes and their encoded counterpart. Its encoding of datatypes does not allow higher-order
inductive arguments. Generic constructions are difficult to use and descriptions have to be
constructed by hand as no macro is provided to derive the encoding of existing Agda datatypes.

• effectfully’s generic library [effectfully 2020] is the most successful attempt at enabling datatype-
generic programming in Agda, and what we base our work upon. If its encoding is the most
expressive of the three, it cannot be used in the safe fragment of Agda. Only two datatype-generic
constructions are provided. Because parameters and indices are not part of the encoding, reflection
has to be used in order to implement usable generic constructions on concrete datatypes. Since it
uses deep conversion functions between datatypes and their encoding, constructions suffer from
poor computational behavior and get stuck on open terms.

This library is our attempt at resolving these long-standing limitations.

6 CONCLUSION AND FUTURE WORK

Using a universe for datatype-generic programming without reflection is one of the flagship
applications of dependently typed languages. At the same time, the proliferation of new datatypes
that is encouraged by these languages means having easy access to generic constructions is essential.
Past attempts at making these universes available to users have largely failed to gain traction, either
because they do not cover a wide enough set of datatypes, because they incur a heavy encoding
overhead, or because they are just not set up to be usable ‘out of the box’ and rely on unsafe
code. The library we present in this paper takes one further step along the path of resolving these
issues and making datatype-generic programming available to regular Agda users. Its interface
strives to be easy to use and work for a general class of datatypes. At the same time we provide
many abstractions to let users define their very own datatype-generic constructions, including the
generation of constraints that must be satisfied for a specific generic construction. Nevertheless,
some rough edges remain to be taken care of, which we discuss below.

Universe-polymorphism. While our encoding does support datatypes defined at any universe
level, we currently do not support universe-polymorphic datatypes, that is, datatypes quantified
over universe levels. This however does not prevent one from using our generic constructions, as
it is possible to define a family of descriptions for any level. Still, our deriveDesc macro will fail
when applied to datatypes where some parameters are universe levels. We think a tangible solution
could be to extend the macro to support the following pattern where the description of V is derived
at an arbitrary universe level a:

data V {a} (A : Set a) : Set a

VD : ∀ {a}→ HasDesc (V {a})

VD {a} = deriveDesc (V {a})

Once this is implemented, it should become possible to test our library on the plethora of datatypes
defined in Agda’s standard library, and assess how many of them fall in the set of datatypes that
can be encoded in our universe.

Nested inductive families with explicit positivity annotations. An attentive reader might have
noticed that our encoding, much like the one of effectfully [2020] or Chapman et al. [2010], does
not support nested inductive types other than tuples. This is quite unfortunate as types like the
following are common practice:

data Tree (A : Set) : Set where

node : (x : A) (xs : List (Tree A))→ Tree A

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

Practical Generic Programming over a Universe of Native Datatypes 113:23

The only way to describe such a datatype in our encoding is to rely on higher-order inductive
arguments:

data Tree’ (A : Set) : Set where

node : (x : A) (n : Nat) (xs : Fin n → Tree’ A)→ Tree’ A

The issue comes from the fact that if we allow any type family F : Set → Set to be used for inductive
arguments in the encoding, Agda cannot enforce that said F is strictly positive in its argument, and
rightly prevents us from definiting the fixed point 𝜇 of the interpretation. An easy way out is to
add existing common strictly positive functors in the encoding, such as lists and vectors, to at least
offer some form of nesting the same way tuples of inductive arguments are supported. But this
would require every datatype-generic construction to be updated for every new constructor added.
Another more flexible approach would be to add explicit polarity annotations in Agda itself, in order
to make it apparent that any such F in the encoding must be strictly-positive, just by looking at its
type.

A more precise encoding of telescopes for more constructions. While we already showcase some
generally useful constructions, the library could be extended further. Deriving the binary para-
metricity relation for a given datatype [Bernardy et al. 2010] would be a good candidate. Another
possible direction would be to build further on our generic construction of the no-confusion
property to implement a generic proof-relevant unification algorithm such as the one presented
by Cockx and Devriese [2018]. However despite our best efforts, we were unable to implement
some useful constructions such as a datatype-generic map and its associated laws. This stems from
how simplistic and permissive our encoding of parameters is. Notably, once a parameter is added
in a telescope, the encoding communicates no information as to how this parameter is being used
in the rest of the telescope. The same is true inside constructor descriptions, where it’s impossible
to distinguish between parameters used positively or negatively in the types introduced. While
we are interested in finding an encoding of telescope accounting for this valuable information, it
is unclear whether such an encoding would be practical enough to implement datatype-generic
constructions.

More general classes of datatypes. Orthogonally, it could also be interesting to extend our approach
to encodings of more general classes of inductive datatypes, such as inductive-recursive types [Diehl
2017; Dybjer and Setzer 1999, 2003], inductive-inductive types [Forsberg 2013; Forsberg and Setzer
2010], and quotient inductive-inductive types [Kaposi et al. 2019].While there is a tradeoff to bemade
between the generality of the encoding and the ease of implementing new generic constructions,
this can be largely mitigated by the ability to emit an impossible constraint for datatypes that are
not supported by a particular generic construction. Another approach could be to abandon the
goal of finding one encoding to rule them all, but accept that some encodings are more suitable
than others for different classes of datatypes. The responsibility would fall on the user to use the
appropriate encoding for the task at hand.

REFERENCES

David Abrahams and Aleksey Gurtovoy. 2004. C++ template metaprogramming: concepts, tools, and techniques from Boost

and beyond. Pearson Education.
Agda Development Team. 2021. Agda 2.6.2 documentation. https://agda.readthedocs.io/en/v2.6.2/ Accessed [2021/07/10].
Thorsten Altenkirch, Conor McBride, and Peter Morris. 2006. Generic Programming with Dependent Types. In Datatype-

Generic Programming - International Spring School, SSDGP 2006, Nottingham, UK, April 24-27, 2006, Revised Lectures

(Lecture Notes in Computer Science, Vol. 4719), Roland Carl Backhouse, Jeremy Gibbons, Ralf Hinze, and Johan Jeuring
(Eds.). Springer, 209ś257. https://doi.org/10.1007/978-3-540-76786-2_4

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

https://agda.readthedocs.io/en/v2.6.2/
https://doi.org/10.1007/978-3-540-76786-2_4

113:24 Lucas Escot and Jesper Cockx

Stevan Andjelkovic. 2011. A family of universes for generic programming. Master’s thesis. https://publications.lib.chalmers.
se/records/fulltext/146810.pdf

Marcin Benke, Peter Dybjer, and Patrik Jansson. 2003. Universes for Generic Programs and Proofs in Dependent Type
Theory. Nord. J. Comput. 10, 4 (2003), 265ś289.

Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. 2010. Parametricity and dependent types. In Proceeding of the

15th ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA, September

27-29, 2010, Paul Hudak and Stephanie Weirich (Eds.). ACM, 345ś356. https://doi.org/10.1145/1863543.1863592
Richard S. Bird, Oege de Moor, and Paul F. Hoogendijk. 1996. Generic Functional Programming with Types and Relations.

Journal of Functional Programming 6, 1 (1996), 1ś28.
Edwin C. Brady. 2021. Idris 2: Quantitative Type Theory in Practice. In 35th European Conference on Object-Oriented

Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference) (LIPIcs, Vol. 194), Anders Mùller and
Manu Sridharan (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ECOOP.2021.9

Corrado Böhm and Alessandro Berarducci. 1985. Automatic Synthesis of Typed Lambda-Programs on Term Algebras.
Theoretical Computer Science 39 (1985), 135ś154.

James Chapman, Pierre Évariste Dagand, Conor McBride, and Peter Morris. 2010. The gentle art of levitation. In Proceeding

of the 15th ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA,

September 27-29, 2010, Paul Hudak and Stephanie Weirich (Eds.). ACM, 3ś14. https://doi.org/10.1145/1863543.1863547
David Christiansen and Edwin Brady. 2016. Elaborator reflection: extending Idris in Idris. In Proceedings of the 21st ACM

SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, Jacques
Garrigue, Gabriele Keller, and Eijiro Sumii (Eds.). ACM, 284ś297. https://doi.org/10.1145/2951913.2951932

Jesper Cockx and Dominique Devriese. 2018. Proof-relevant unification: Dependent pattern matching with only the axioms
of your type theory. Journal of Functional Programming 28 (2018). https://doi.org/10.1017/S095679681800014X

Pierre-Evariste Dagand and Conor McBride. 2012. Elaborating Inductive Definitions.
Larry Diehl. 2017. Fully Generic Programming over Closed Universes of Inductive-Recursive Types. Ph. D. Dissertation. Portland

State University. https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=4656&context=open_access_etds
Larry Diehl and Tim Sheard. 2013. Leveling up dependent types: generic programming over a predicative hierarchy of

universes. In Proceedings of the 2013 ACM SIGPLAN workshop on Dependently-typed programming, DTP@ICFP 2013, Boston,

Massachusetts, USA, September 24, 2013, Stephanie Weirich (Ed.). ACM, 49ś60. https://doi.org/10.1145/2502409.2502414
LarryDiehl and Tim Sheard. 2014. Generic constructors and eliminators from descriptions: type theory as a dependently typed

internal DSL. In Proceedings of the 10th ACM SIGPLAN workshop on Generic programming, WGP 2014, Gothenburg, Sweden,

August 31, 2014, José Pedro Magalháes and Tiark Rompf (Eds.). ACM, 3ś14. https://doi.org/10.1145/2633628.2633630
Peter Dybjer and Anton Setzer. 1999. A Finite Axiomatization of Inductive-Recursive Definitions. In Typed Lambda Calculi

and Applications, 4th International Conference, TLCA 99, L Aquila, Italy, April 7-9, 1999, Proceedings (Lecture Notes in

Computer Science, Vol. 1581), Jean-Yves Girard (Ed.). Springer, 129ś146. http://link.springer.de/link/service/series/0558/
bibs/1581/15810129.htm

Peter Dybjer and Anton Setzer. 2003. Induction-recursion and initial algebras. Annals of Pure and Applied Logic 124, 1-3
(2003), 1ś47. https://doi.org/10.1016/S0168-0072(02)00096-9

effectfully. 2016a. Deriving eliminators of described data types. http://effectfully.blogspot.com/2016/06/deriving-eliminators-
of-described-data.html

effectfully. 2016b. Descriptions. http://effectfully.blogspot.com/2016/04/descriptions.html
effectfully. 2016c. Emulating cumulativity in Agda. http://effectfully.blogspot.com/2016/07/cumu.html
effectfully. 2020. Generic. https://github.com/effectfully/Generic
Lucas Escot and Jesper Cockx. 2022. Generics, a library for datatype-generic programming in Agda. https://doi.org/10.5281/

zenodo.6767057
Fredrik Nordvall Forsberg. 2013. Inductive-inductive definitions. Ph. D. Dissertation. Swansea University, UK. https:

//cronfa.swan.ac.uk/Record/cronfa43083 British Library, EThOS.
Fredrik Nordvall Forsberg and Anton Setzer. 2010. Inductive-Inductive Definitions. In Computer Science Logic, 24th

International Workshop, CSL 2010, 19th Annual Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010.

Proceedings (Lecture Notes in Computer Science, Vol. 6247), Anuj Dawar and Helmut Veith (Eds.). Springer, 454ś468.
https://doi.org/10.1007/978-3-642-15205-4_35

Ralf Hinze and Johan Jeuring. 2003. Generic Haskell: Practice and Theory. In Generic Programming - Advanced Lectures

(Lecture Notes in Computer Science, Vol. 2793), Roland Carl Backhouse and Jeremy Gibbons (Eds.). Springer, 1ś56.
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=2793&spage=1

LLC Jane Street Group. 2018. ppxlib’s user manual. https://github.com/ocaml-ppx/ppx_deriving
Patrik Jansson and Johan Jeuring. 1997. Polyp - A Polytypic Programming Language. In POPL. 470ś482. https://doi.org/10.

1145/263699.263763
C. Barry Jay. 1995. A Semantics for Shape. Science of Computer Programming 25, 2-3 (1995), 251ś283.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

https://publications.lib.chalmers.se/records/fulltext/146810.pdf
https://publications.lib.chalmers.se/records/fulltext/146810.pdf
https://doi.org/10.1145/1863543.1863592
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1145/2951913.2951932
https://doi.org/10.1017/S095679681800014X
https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=4656&context=open_access_etds
https://doi.org/10.1145/2502409.2502414
https://doi.org/10.1145/2633628.2633630
http://link.springer.de/link/service/series/0558/bibs/1581/15810129.htm
http://link.springer.de/link/service/series/0558/bibs/1581/15810129.htm
https://doi.org/10.1016/S0168-0072(02)00096-9
http://effectfully.blogspot.com/2016/06/deriving-eliminators-of-described-data.html
http://effectfully.blogspot.com/2016/06/deriving-eliminators-of-described-data.html
http://effectfully.blogspot.com/2016/04/descriptions.html
http://effectfully.blogspot.com/2016/07/cumu.html
https://github.com/effectfully/Generic
https://doi.org/10.5281/zenodo.6767057
https://doi.org/10.5281/zenodo.6767057
https://cronfa.swan.ac.uk/Record/cronfa43083
https://cronfa.swan.ac.uk/Record/cronfa43083
https://doi.org/10.1007/978-3-642-15205-4_35
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=2793&spage=1
https://github.com/ocaml-ppx/ppx_deriving
https://doi.org/10.1145/263699.263763
https://doi.org/10.1145/263699.263763

Practical Generic Programming over a Universe of Native Datatypes 113:25

Simon Peyton Jones. 2003. Haskell 98 language and libraries: the revised report. Cambridge University Press.
Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. 2019. Constructing quotient inductive-inductive types. Proceedings

of the ACM on Programming Languages 3 (2019). https://dl.acm.org/citation.cfm?id=3290315
Steve Klabnik and Carol Nichols. 2019. The Rust Programming Language (Covers Rust 2018). No Starch Press.
Per Martin-Löf. 1984. Intuitionistic type theory. Studies in proof theory, Vol. 1. Bibliopolis.
Conor McBride. 2002. Elimination with a Motive. In Types for Proofs and Programs, Paul Callaghan, Zhaohui Luo, James

McKinna, Robert Pollack, and Robert Pollack (Eds.).
Conor McBride. 2013. Dependently typed metaprogramming (in Agda). Lecture Notes (2013).
Conor McBride, Healfdene Goguen, and James McKinna. 2004. A Few Constructions on Constructors. In Types for Proofs

and Programs, International Workshop, TYPES 2004, Jouy-en-Josas, France, December 15-18, 2004, Revised Selected Papers

(Lecture Notes in Computer Science, Vol. 3839), Jean-Christophe Filliâtre, Christine Paulin-Mohring, and Benjamin Werner
(Eds.). Springer, 186ś200. https://doi.org/10.1007/11617990_12

Peter Morris, Thorsten Altenkirch, and Neil Ghani. 2009. A Universe of Strictly Positive Families. Int. J. Found. Comput. Sci.

20, 1 (2009), 83ś107. https://doi.org/10.1142/S0129054109006462
Peter W. J. Morris. 2007. Constructing Universes for Generic Programming. Ph. D. Dissertation. University of Nottingham, UK.

http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.519405 British Library, EThOS.
Bengt Nordström, Kent Petersson, and Jan M Smith. 1990. Programming in Martin-Löf’s type theory. Vol. 200. Oxford

University Press.
Tim Sheard and Simon L. Peyton Jones. 2002. Template meta-programming for Haskell. SIGPLAN Notices 37, 12 (2002),

60ś75. https://doi.org/10.1145/636517.636528
Yorick Sijsling. 2016. Generic programming with ornaments and dependent types. Master’s thesis.
Stephanie Weirich and Chris Casinghino. 2010. Arity-generic datatype-generic programming. In Proceedings of the 4th

ACM Workshop Programming Languages meets Program Verification, PLPV 2010, Madrid, Spain, January 19, 2010, Cormac
Flanagan and Jean-Christophe Filliâtre (Eds.). ACM, 15ś26. https://doi.org/10.1145/1707790.1707799

Pierre Évariste Dagand. 2013. A cosmology of datatypes : reusability and dependent types. Ph. D. Dissertation. University of
Strathclyde, Glasgow, UK. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.605921 British Library, EThOS.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 113. Publication date: August 2022.

https://dl.acm.org/citation.cfm?id=3290315
https://doi.org/10.1007/11617990_12
https://doi.org/10.1142/S0129054109006462
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.519405
https://doi.org/10.1145/636517.636528
https://doi.org/10.1145/1707790.1707799
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.605921

	Abstract
	1 Introduction
	2 Showcase
	2.1 Generic Show
	2.2 Decidable Equality
	2.3 Generic Induction Principle
	2.4 No Confusion

	3 Encoding Agda datatypes in Agda
	3.1 Encoding Telescopes
	3.2 Datatype Descriptions
	3.3 Relating to Native Agda Datatypes
	3.4 Deriving the Encoding

	4 Defining datatype-generic constructions
	4.1 Generic Helpers
	4.2 Generic Show
	4.3 Generic Induction Principle

	5 Related Work
	6 Conclusion and Future Work
	References

